
django-widgy Documentation
Release 0.7.1

Programmers at Fusionbox

August 18, 2015

Contents

1 Design 3
1.1 Data Model . 3
1.2 Versioning . 4
1.3 Customization . 4
1.4 Owners . 4
1.5 Editor . 5

2 Contrib Packages 7
2.1 Page Builder . 7
2.2 Form Builder . 8
2.3 Widgy Mezzanine . 10
2.4 Review Queue . 11

3 API Reference 13
3.1 Base Models . 13
3.2 Widgy Site . 17
3.3 Links Framework . 20
3.4 Template Tags . 21

4 Tutorials 23
4.1 Quickstart . 23
4.2 Building Widgy’s JavaScript With RequireJS . 27
4.3 Writing Your First Widget . 27
4.4 Proxy Widgy Model Tutorial . 30

5 Changelog 33
5.1 0.7.1 (2015-08-18) . 33
5.2 0.7.0 (2015-07-31) . 33
5.3 0.6.1 (2015-05-01) . 33
5.4 0.6.0 (2015-04-30) . 34
5.5 0.5.0 (2015-04-17) . 34
5.6 0.4.0 (2015-03-12) . 34
5.7 0.3.5 (2015-01-30) . 35
5.8 0.3.4 (2015-01-22) . 35
5.9 0.3.3 (2014-12-22) . 35
5.10 0.3.2 (2014-10-16) . 35
5.11 0.3.1 (2014-10-01) . 35
5.12 0.3.0 (2014-09-24) . 36

i

5.13 0.2.0 (2014-08-04) . 37
5.14 0.1.6 (2014-09-09) . 38
5.15 0.1.5 (2013-11-23) . 38
5.16 0.1.4 (2013-11-04) . 38
5.17 0.1.3 (2013-10-25) . 38
5.18 0.1.2 (2013-10-23) . 38
5.19 0.1.1 (2013-10-21) . 39
5.20 0.1.0 (2013-10-18) . 39

6 Development 41

ii

django-widgy Documentation, Release 0.7.1

django-widgy is a heterogeneous tree editor for Django that is well-suited for use as a CMS. A heterogeneous tree is a
tree where each node can be a different type—just like HTML. Widgy provides the representation for heterogeneous
trees as well as an interactive JavaScript editor for them. Widgy supports Django 1.4+.

Widgy was originally created for powerful content management, but it can have many different uses.

Contents 1

django-widgy Documentation, Release 0.7.1

2 Contents

CHAPTER 1

Design

django-widgy is a heterogeneous tree editor for Django. It enables you to combine models of different types into a
tree structure.

The django-widgy project is split into two main pieces. Widgy core provides Node, the Content abstract class,
versioning models, views, configuration helpers, and the JavaScript editor code. Much like in Django, django-widgy
has many contrib packages that provide the batteries.

1.1 Data Model

Central to Widgy are Nodes, Contents, and Widgets. Node is a subclass of Treebeard’s MP_Node. Nodes concern
themselves with the tree structure. Each Node is associated with an instance of Content subclass. A Node + Content
combination is called a Widget.

Storing all the structure data in Node and having that point to any subclass of Content allows us to have all the benefits
of a tree, but also the flexibility to store very different data within a tree.

Nodes are associated with their Content through a GenericForeignKey.

This is what a hypothetical Widgy tree might look like.:

Node (TwoColumnLayout)
|
+-- Node (MainBucket)
| |
| +-- Node (Text)
| |
| +-- Node (Image)
| |
| +-- Node (Form)
| |
| +-- Node (Input)
| |
| +-- Node (Checkboxes)
| |
| +-- Node (SubmitButton)
|
+-- Node (SidebarBucket)

|
+-- Node (CallToAction)

3

https://tabo.pe/projects/django-treebeard/docs/2.0b1/mp_tree.html#treebeard.mp_tree.MP_Node
https://docs.djangoproject.com/en/1.5/ref/contrib/contenttypes/#django.contrib.contenttypes.generic.GenericForeignKey

django-widgy Documentation, Release 0.7.1

1.2 Versioning

Widgy comes with an optional but powerful versioning system inspired by Git. Versioning works by putting another
model called a version tracker between the owner and the root node. Just like in Git, each VersionTracker has a
reference to a current working copy and then a list of commits. A VersionCommit is a frozen snapshot of the tree.

Versioning also supports delayed publishing of commits. Normally commits will be visible immediately, but it is
possible to set a publish time for a commit that allows a user to future publish content.

To enable versioning, all you need to do is use widgy.db.fields.VersionedWidgyfield instead of
widgy.db.fields.WidgyField.

Todo
diagram

1.3 Customization

There are two main ways to customize the behavior of Widgy and existing widgets. The first is through the
WidgySite. WidgySite is a centralized source of configuration for a Widgy instance, much like Django’s
AdminSite. You can also configure each widget’s behavior by subclassing it with a proxy.

1.3.1 WidgySite

• tracks installed widgets

• stores URLs

• provides authorization

• allows centralized overriding of compatibility between components

• accomodates for multiple instances of widgy

1.3.2 Proxying a Widget

Widgy uses a special subclass of GenericForeignKey that supports retrieving proxy models. Subclassing a model
as a proxy is a lightweight method for providing custom behavior for widgets that you don’t control. A more in-depth
tutorial on proxying widgets can be found at the Proxy Widgy Model Tutorial.

1.4 Owners

A Widgy owner is a model that has a WidgyField.

1.4.1 Admin

Use WidgyAdmin (or a WidgyForm for your admin form)

Use get_action_links to add a preview button to the editor.

4 Chapter 1. Design

https://docs.djangoproject.com/en/1.5/ref/contrib/admin/#django.contrib.admin.AdminSite
https://docs.djangoproject.com/en/1.5/ref/contrib/contenttypes/#django.contrib.contenttypes.generic.GenericForeignKey

django-widgy Documentation, Release 0.7.1

1.4.2 Page Builder

If layouts should extend something other than layout_base.html, set the base_template property on your
owner.

1.4.3 Form Builder

widgy.contrib.form_builder requires a get_form_action method on the owner. It accepts the form
widget and the Widgy context, and returns a URL for forms to submit to. You normally submit to your own view and
mix in HandleFormMixin to help with handling the form submission. Make sure re-rendering after a validation
error works.

Todo
tutorials/owner

1.4.4 Tutorial

• It’s probably a good idea to render the entire page through Widgy, so I’ve used a template like this:

{# product_list.html #}

{% include widgy_tags %}{% render_root category 'content' %}

I have been inserting the ‘view’ style functionality, in this case a list of products in a category, with
ProductList widget.

You’ll probably have to add support for root_node_override to your view, like this:

root_node_pk = self.kwargs.get('root_node_pk')
if root_node_pk:

site.authorize_view(self.request, self)
kwargs['root_node_override'] = get_object_or_404(Node, pk=root_node_pk)

elif hasattr(self, 'form_node'):
kwargs['root_node_override'] = self.form_node.get_root()

1.5 Editor

Widgy provides a drag and drop JavaScript editor interface to the tree in the form of a Django formfield.

The editor is built on Backbone.js and RequireJS to provide a modular and customizable interface.

1.5. Editor 5

django-widgy Documentation, Release 0.7.1

6 Chapter 1. Design

CHAPTER 2

Contrib Packages

Here is where we keep the batteries. These packages are Django apps that add functionality or widgets to Widgy.

2.1 Page Builder

Page builder is a collection of widgets for the purpose of creating HTML pages.

2.1.1 Installation

Page builder depends on the following packages:

• django-filer

• markdown

• bleach

• sorl-thumbnail

You can install them manually, or you can install them using the django-widgy package:

$ pip install django-widgy[page_builder]

2.1.2 Widgets

class widgy.contrib.page_builder.models.DefaultLayout

Todo
Who actually uses DefaultLayout?

class widgy.contrib.page_builder.models.MainContent

class widgy.contrib.page_builder.models.Sidebar

class widgy.contrib.page_builder.models.Markdown

class widgy.contrib.page_builder.models.Html
The HTML Widget provides a CKEditor field. It is useful for large blocks of text that need simple inline styling.

7

django-widgy Documentation, Release 0.7.1

It purposefully doesn’t have the capability to add images or tables, because there are already widgets that the
developer can control.

Note: There is a possible permission escalation vulnerability with allowing any admin user to add HTML.
For this reason, the Html widget sanitizes all the HTML using bleach. If you want to add unsanitized HTML,
please use the UnsafeHtml widget.

class widgy.contrib.page_builder.models.UnsafeHtml
This is a widget which allows the user to output arbitrary HTML. It is unsafe because a non-superuser could
gain publishing the unsafe HTML on the website with XSS code to cause permission escalation.

Warning: The page_builder.add_unsafehtml and page_builder.edit_unsafehtml per-
missions are equivalent to is_superuser status because of the possibility of a staff user inserting
JavaScript that a superuser will execute.

class widgy.contrib.page_builder.models.CalloutWidget

class widgy.contrib.page_builder.models.Accordion

class widgy.contrib.page_builder.models.Tabs

class widgy.contrib.page_builder.models.Section

class widgy.contrib.page_builder.models.Image

class widgy.contrib.page_builder.models.Video

class widgy.contrib.page_builder.models.Figure

class widgy.contrib.page_builder.models.GoogleMap

class widgy.contrib.page_builder.models.Button

2.1.3 Tables

class widgy.contrib.page_builder.models.Table

class widgy.contrib.page_builder.models.TableRow

class widgy.contrib.page_builder.models.TableHeaderData

class widgy.contrib.page_builder.models.TableData

2.1.4 Database Fields

class widgy.contrib.page_builder.db.fields.ImageField
A FilerFileField that only accepts images. Includes sensible defaults for use in Widgy — null=True,
related_name=’+’ and on_delete=PROTECT.

2.2 Form Builder

Form builder is a collection of tools built on top of Page Builder that help with the creation of HTML forms.

To enable Form Builder, add widgy.contrib.form_builder to your INSTALLED_APPS.

8 Chapter 2. Contrib Packages

https://pypi.python.org/pypi/bleach
http://django-filer.readthedocs.org/en/latest/usage.html#usage
https://docs.djangoproject.com/en/1.5/ref/settings/#std:setting-INSTALLED_APPS

django-widgy Documentation, Release 0.7.1

2.2.1 Installation

Form builder depends on the following packages:

• django-widgy[page_builder]

• django-extensions

• html2text

• phonenumbers

You can install them manually, or you can install them using the django-widgy package:

$ pip install django-widgy[page_builder,form_builder]

2.2.2 Success Handlers

When a user submits a Form, the Form will loop through all of the success handler widgets to do the things that you
would normally put in the form_valid method of a django.views.generic.FormView, for example. Form
Builder provides a couple of built-in success handlers that do things like saving the data, sending emails, or submitting
to Salesforce.

2.2.3 Widgets

class widgy.contrib.form_builder.models.Form
This widget corresponds to the HTML <form> tag. It acts as a container and also can be used to construct a
Django Form class.

build_form_class(self)
Returns a Django Form class based on the FormField widgets inside the form.

class widgy.contrib.form_builder.models.Uncaptcha

class widgy.contrib.form_builder.models.FormField
FormField is an abstract base class for the following widgets. Each FormField has the following fields
which correspond to the same attributes on django.forms.fields.Field.

label
Corresponds with the HTML <label> tag. This is the text that will go inside the label.

required
Indicates whether or not this field is required. Defaults to True.

help_text
A TextField for outputting help text.

class widgy.contrib.form_builder.models.FormInput
This is a widget for all simple <input> types. It supports the following input types: text, number, email,
tel, checkbox, date. Respectively they correspond with the following Django formfields: CharField,
IntegerField, EmailField, PhoneNumberField, BooleanField, DateField.

class widgy.contrib.form_builder.models.Textarea

class widgy.contrib.form_builder.models.ChoiceField

class widgy.contrib.form_builder.models.MultipleChoiceField

2.2. Form Builder 9

https://docs.djangoproject.com/en/1.5/ref/forms/fields/#django.forms.CharField
https://docs.djangoproject.com/en/1.5/ref/forms/fields/#django.forms.IntegerField
https://docs.djangoproject.com/en/1.5/ref/forms/fields/#django.forms.EmailField
https://docs.djangoproject.com/en/1.5/ref/forms/fields/#django.forms.BooleanField
https://docs.djangoproject.com/en/1.5/ref/forms/fields/#django.forms.DateField

django-widgy Documentation, Release 0.7.1

2.2.4 Owner Contract

For custom Widgy owners, Form Builder needs to have a view to use for handling form submissions.

1. Each widgy owner should implement a get_form_action_url(form, widgy_context)method that
returns a URL that points to a view (see step 2).

2. Create a view to handle form submissions for each owner. Form Builder provides the class-based views mixin,
HandleFormMixin, to make this easier.

2.2.5 Views

class widgy.contrib.form_builder.views.HandleFormMixin
An abstract view mixin for handling form_builder.Form submissions. It inherits from
django.views.generic.edit.FormMixin.

It should be registered with a URL similar to the following.

url('^form/(?P<form_node_pk>[^/]*)/$', 'your_view')

HandleFormMixin does not implement a GET method, so your subclass should handle that. Here is an
example of a fully functioning implementation:

from django.views.generic import DetailView
from widgy.contrib.form_builder.views import HandleFormMixin

class EventDetailView(HandleFormMixin, DetailView):
model = Event

def post(self, *args, **kwargs):
self.object = self.get_object()
return super(EventDetailView, self).post(*args, **kwargs)

widgy.contrib.widgy_mezzanine.views.HandleFormView provides an even more robust exam-
ple implementation.

2.3 Widgy Mezzanine

This app provides integration with the Mezzanine project. Widgy Mezzanine uses Mezzanine for site structure and
Widgy for page content. It does this by providing a subclass of Mezzanine’s Page model called WidgyPage which
delegates to Page Builder for all content.

The dependencies for Widgy Mezzanine (Mezzanine and Widgy’s Page Builder app) are not installed by default when
you install widgy, you can install them yourself:

$ pip install Mezzanine django-widgy[page_builder]

or you can install them using through the widgy package:

$ pip install django-widgy[page_builder,widgy_mezzanine]

In order to use Widgy Mezzanine, you must provide WIDGY_MEZZANINE_SITE in your settings. This is a fully-
qualified import path to an instance of WidgySite. You also need to install the URLs.

url(r'^widgy-mezzanine/', include('widgy.contrib.widgy_mezzanine.urls')),

10 Chapter 2. Contrib Packages

https://docs.djangoproject.com/en/1.5/ref/class-based-views/mixins-editing/#django.views.generic.edit.FormMixin
http://mezzanine.jupo.org/

django-widgy Documentation, Release 0.7.1

class widgy.contrib.widgy_mezzanine.models.WidgyPage
The WidgyPage class is swappable like User. If you want to over-
ride it, specify a WIDGY_MEZZANINE_PAGE_MODEL in your settings. the
widgy.contrib.widgy_mezzanine.models.WidgyPageMixin mixin is pro-
vided for ease of overriding. Any code that references a WidgyPage should use the
widgy.contrib.widgy_mezzanine.get_widgypage_model() to get the correct class.

2.4 Review Queue

Some companies have stricter policies for who can edit and who can publish content on their websites. The review
queue app is an extension to versioning which collects commits for approval by a user with permissions.

The review_queue.change_reviewedversioncommit permission is used to determine who is allowed to
approve commits.

To enabled the review queue,

1. Add widgy.contrib.review_queue to your INSTALLED_APPS.

2. Your WidgySite needs to inherit from ReviewedWidgySite.

3. Register a subclass of VersionCommitAdminBase.

from django.contrib import admin
from widgy.contrib.review_queue.admin import VersionCommitAdminBase
from widgy.contrib.review_queue.models import ReviewedVersionCommit

class VersionCommitAdmin(VersionCommitAdminBase):
def get_site(self):

return my_site

admin.site.register(ReviewedVersionCommit, VersionCommitAdmin)

4. If upgrading from a non-reviewed site, a widgy.contrib.review_queue.models.ReviewedVersionCommit
object must be created for each widgy.models.VersionCommit. There is a management command to do
this for you. It assumes that all existing commits should be approved.

./manage.py populate_review_queue

class admin.VersionCommitAdminBase
This an abstract ModelAdmin class that displays the pending changes for approval. Any it abstract, because it
doesn’t know which WidgySite to use.

get_site(self)
The WidgySite that this specific VersionCommitAdminBase needs to work on.

Note: The review queue’s undo (it can undo approvals) support requires Django >= 1.5 or the session-based
MESSAGE_STORAGE:

MESSAGE_STORAGE = 'django.contrib.messages.storage.session.SessionStorage'

2.4. Review Queue 11

https://docs.djangoproject.com/en/1.5/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.djangoproject.com/en/1.5/ref/settings/#std:setting-INSTALLED_APPS
https://docs.djangoproject.com/en/1.5/ref/contrib/admin/#django.contrib.admin.ModelAdmin

django-widgy Documentation, Release 0.7.1

12 Chapter 2. Contrib Packages

CHAPTER 3

API Reference

3.1 Base Models

class widgy.models.base.Content

node
Accessor for the Node that the Content belongs to.

Tree Traversal

With the exception depth_first_order(), the following methods are all like the traversal API provided
by Treebeard, but instead of returning Nodes, they return Contents.

get_root(self)

get_ancestors(self)

get_parent(self)

get_next_sibling(self)

get_children(self)

depth_first_order(self)
Convenience method for iterating over all the Contents in a subtree in order. This is similar to Tree-
beard’s get_descendants(), but includes itself.

Tree Manipulation

The following methods mirror those of Node, but accept a WidgySite as the first argument. You must call
these methods on Content and not on Node.

>>> root = Layout.add_root(widgy_site)
>>> main = root.add_child(widgy_site, MainContent)
>>> sidebar = main.add_sibling(widgy_site, Sidebar, title='Alerts')
move the sidebar to the left of the main content.
>>> sidebar.reposition(widgy_site, right=main)

classmethod add_root(cls, site, **kwargs)
Creates a root node widget. Any kwargs will be passed to the Content class’s initialize method.

13

https://tabo.pe/projects/django-treebeard/docs/2.0b1/api.html#module-treebeard.models
https://tabo.pe/projects/django-treebeard/docs/2.0b1/api.html#treebeard.models.Node.get_descendants

django-widgy Documentation, Release 0.7.1

add_child(self, site, cls, **kwargs)
Adds a new instance of cls as the last child of the current widget.

add_sibling(self, site, cls, **kwargs)
Adds a new instance of cls to the right of the current widget.

reposition(self, site, right=None, parent=None)
Moves the current widget to the left of right or to the last child position of parent.

post_create(self, site)
Hook for doing things after a widget has been created (a Content has been created and put in the tree).
This is useful if you want to have default children for a widget, for example.

delete(self, raw=False)
If raw is True the widget is being deleted due to a failure in widget creation, so post_create will not
have been run yet.

clone(self)
This method is called by Node.clone_tree(). You may wish to override it if your Content has special
needs like a ManyToManyField.

Warning: Clone is used to freeze tree state in Versioning. If your clone() method is incorrect, your
history will be corrupt.

Editing

display_name
A human-readable short name for widgets. This defaults to the verbose_name of the widget.

Hint: You can use the @property decorator to make this dynamic.

Todo
screenshot

tooltip
A class attribute that sets the tooltip for this widget on the shelf.

css_classes
A list of CSS classes to apply to the widget element in the Editor. Defaults to app_label and
module_name of the widget.

shelf = False
Denotes whether this widget have a shelf. Root nodes automatically have a shelf. The shelf is where the
widgets exist in the interface before they are dragged on. It is useful to set shelf to True if there are a
large number of widgets who can only go in a specfic subtree.

component_name = ’widget’
Specifies which JavaScript component to use for this widget.

Todo
Write documentation about components.

14 Chapter 3. API Reference

django-widgy Documentation, Release 0.7.1

pop_out = CANNOT_POP_OUT
It is possible to open a subtree in its own editing window. pop_out controls if a widget can be popped
out. There are three values for pop_out:

CANNOT_POP_OUT

CAN_POP_OUT

MUST_POP_OUT

form = ModelForm
The form class to use for editing. Also see get_form_class().

formfield_overrides = {}
Similar to ModelAdmin, Content allows you to override the form fields for specific model field classes.

draggable = True
Denotes whether this widget may be moved through the editing interface.

deletable = True
Denotes whether this widget may be deleted through the editing interface.

editable = False
Denotes whether this widget may be edited through the editing interface. Widgy will automatically gener-
ate a ModelForm to provide the editing functionality. Also see form and get_form_class().

preview_templates
A template name or list of template names for rendering in the widgy Editor. See
get_templates_hierarchy() for how the default value is derived.

edit_templates
A template name or list of template names for rendering the edit interface in the widgy Editor. See
get_templates_hierarchy() for how the default value is derived.

get_form_class(self, request)
Returns a ModelForm class that is used for editing.

get_form(self, request, **form_kwargs)
Returns a form instance to use for editing.

classmethod get_templates_hierarchy(cls, **kwargs)
Loops through MRO to return a list of possible template names for a widget. For example the preview
template for something like Tabs might look like:

•widgy/page_builder/tabs/preview.html

•widgy/mixins/tabbed/preview.html

•widgy/page_builder/accordion/preview.html

•widgy/page_builder/bucket/preview.html

•widgy/models/content/preview.html

•widgy/page_builder/preview.html

•widgy/mixins/preview.html

•widgy/page_builder/preview.html

•widgy/models/preview.html

•widgy/preview.html

3.1. Base Models 15

https://docs.djangoproject.com/en/1.5/ref/contrib/admin/#django.contrib.admin.ModelAdmin
https://docs.djangoproject.com/en/1.5/topics/forms/modelforms/#django.forms.ModelForm
https://docs.djangoproject.com/en/1.5/topics/forms/modelforms/#django.forms.ModelForm

django-widgy Documentation, Release 0.7.1

Frontend Rendering

render(self, context, template=None)
The method that is called by the render() template tag to render the Content. It is useful to override
this if you need to inject things into the context.

get_render_templates(self, context)
Returns a template name or list of template names for frontend rendering.

Compatibility

Widgy provide robust machinery for compatibility between Contents. Widgy uses the compatibility system to
validate the relationships between parent and child Contents.

Compatibility is checked when rendering the shelf and when adding or moving widgets in the tree.

accepting_children = False
An easy compatibility configuration attribute. See valid_parent_of() for more details.

valid_parent_of(self, cls, obj=None)
If obj is provided, return True if it could be a child of the current widget. cls is the type of obj.

If obj isn’t provided, return True if a new instance of cls could be a child of the current widget.

obj is None when the child widget is being created or Widgy is checking the compatibility of the widgets
on the shelf. If it is being moved from another location, there will be an instance. A parent and child are
only compatible if both valid_parent_of() and valid_child_of() return True. This defaults
to the value of accepting_children.

Here is an example of a parent that only accepts three instances of B:

class A(Content):
def valid_parent_of(self, cls, obj=None):

If this is already my child, it can stay my child.
This works for obj=None because self.get_children()
will never contain None.
if obj in self.get_children():

return True
else:

Make sure it is of type B
return (issubclass(cls, B)
And that I don't already have three children.

and len(self.get_children()) < 3)

classmethod valid_child_of(cls, parent, obj=None)
If obj is provided, return True if it can be a child of parent. obj will be an instance of cls—it may
feel like an instance method.

If obj isn’t provided, return True if a new instance of cls could be a child of parent.

This defaults to True.

Here is an example of a Content that can not live inside another instance of itself:

class Foo(Content):
@classmethod
def valid_child_of(cls, parent, obj=None):

for p in list(parent.get_ancestors()) + [parent]:
if isinstance(p, Foo):

16 Chapter 3. API Reference

django-widgy Documentation, Release 0.7.1

return False
return super(Foo, cls).valid_child_of(parent, obj)

equal(self, other)
Should return True if self is equal to other. The default implementation checks the equality of each
widget’s get_attributes().

class widgy.models.base.Node

content
A generic foreign key point to our Content instance.

is_frozen
A boolean field indicating whether this node is frozen and can’t be changed in any way. This is used to
preserve old tree versions for versioning.

render(self, *args, **kwargs)
Renders this subtree and returns a string. Normally you shouldn’t
call it directly, use widgy.db.fields.WidgyField.render() or
widgy.templatetags.widgy_tags.render().

depth_first_order(self)
Like Content.depth_first_order(), but over nodes.

prefetch_tree(self)
Efficiently fetches an entire tree (or subtree), including content instances. It uses 1 + m queries, where m
is the number of distinct content types in the tree.

classmethod prefetch_trees(cls, *root_nodes)
Prefetches multiple trees. Uses n + m queries, where n is the number of trees and m is the number of
distinct content types across all the trees.

maybe_prefetch_tree(self)
Prefetches the tree unless it has been prefetched already.

classmethod find_widgy_problems(cls, site=None)
When a Widgy tree is edited without protection from a transaction, it is possible to get into an inconsistent
state. This method returns a tuple containing two lists:

1.A list of node pks whose content pointer is dangling – pointing to a content that doesn’t exist.

2.A list of node pks whose content_type doesn’t exist. This might happen when you switch branches
and remove the code for a widget, but still have the widget in your database. These are represented by
UnknownWidget instances.

3.2 Widgy Site

class widgy.site.WidgySite

get_all_content_classes(self)

Returns a list (or set) of available Content classes (widget classes). This is used

•To find layouts from root_choices

•To find widgets to put on the shelf (using validate_relationship() against all existing widgets in
a tree)

3.2. Widgy Site 17

django-widgy Documentation, Release 0.7.1

urls(self)

Returns the urlpatterns needed for this Widgy site. It should be included in your urlpatterns:

('^admin/widgy/', include(widgy_site.urls)),

get_urls(self)

This method only exists due to the example ModelAdmin sets.

Todo
is urls or get_urls the preferred interface?

reverse(self, *args, **kwargs)

Todo
explain reverse

authorize_view(self, request, view)

Every Widgy view will call this before doing anything. It can be considered a ‘view’ or ‘read’ permission.
It should raise a PermissionDenied when the request is not authorized. It can be used to implement
permission checking that should happen on every view, like limiting access to staff members:

def authorize_view(self, request, view):
if not request.user.is_staff:

raise PermissionDenied
super(WidgySite, self).authorize_view(request, value)

has_add_permission(self, request, content_class)

Given a Content class, can this request add a new instance? Returns True or False. The default implemen-
tation uses the Django Permission framework.

has_change_permission(self, request, obj_or_class)

Like has_add_permission(), but for changing. It receives an instance if one is available, otherwise a
class.

has_delete_permission(self, request, obj_or_class_or_list)

Like has_change_permission(), but for deleting. obj_or_class_or_list can also be a list, when
attempting to delete a widget that has children.

validate_relationship(self, parent, child)

The single compatibility checking entry point. The default implementation delegates to
valid_parent_of() of valid_child_of().

parent is always an instance, child can be a class or an instance.

valid_parent_of(self, parent, child_class, child=None)

Does parent accept the child instance, or a new child_class instance, as a child?

The default implementation just delegates to Content.valid_parent_of.

valid_child_of(self, parent, child_class, child=None)

Will the child instance, or a new instance of child_class, accept parent as a parent?

The default implementation just delegates to Content.valid_child_of.

18 Chapter 3. API Reference

https://docs.djangoproject.com/en/1.5/ref/contrib/admin/#django.contrib.admin.ModelAdmin
https://docs.djangoproject.com/en/1.5/ref/exceptions/#django.core.exceptions.PermissionDenied

django-widgy Documentation, Release 0.7.1

get_version_tracker_model(self)

Returns the class to use as a VersionTracker. This can be overridden to customize versioning behavior.

Views

Each of these properties returns a view callable. A urlpattern is built in get_urls(). It is important that the
same callable is used for the lifetime of the site, so django.utils.functional.cached_property
is helpful.

node_view(self)

content_view(self)

shelf_view(self)

node_edit_view(self)

node_templates_view(self)

node_parents_view(self)

commit_view(self)

history_view(self)

revert_view(self)

diff_view(self)

reset_view(self)

Media Files

Note: These properties are cached at server start-up, so new ones won’t be detected until the server restarts.
This means that when using runserver, you have to manually restart the server when adding a new file.

scss_files

Returns a list of SCSS files to be included on the front-end. Widgets can add SCSS files
just by making a file available at a location determined by its app label and name (see
widgy.models.Content.get_templates_hierarchy()). For example:

widgy/page_builder/html.scss

js_files
Like scss_files, but JavaScript files.

admin_scss_files
Like scss_files, but for the back-end editing interface. These paths look like, for an app:

widgy/page_builder/admin.scss

and for a widget:

widgy/page_builder/table.admin.scss

If you want to included JavaScript for the editing interface, you should use a component.

3.2. Widgy Site 19

django-widgy Documentation, Release 0.7.1

3.3 Links Framework

Widgy core also provides a linking framework that allows any model to point to any other model without really
knowing which models are available for linking. This is the mechanism by which Page Builder’s Button can link to
Widgy Mezzanine’s WidgyPage without even knowing that WidgyPage exists. There are two components to the
links framework, LinkField and the link registry.

3.3.1 Model Field

class widgy.models.links.LinkField
LinkField is a subclass of django.contrib.contenttypes.generic.GenericForeignKey.
If you want to add a link to any model, you can just add a LinkField to it.

from django.db import models
from widgy.models import links

class MyModel(models.Model):
title = models.Charfield(max_length=255)
link = links.LinkField()

LinkField will automatically add the two required fields for GenericForeignKey, the ContentType For-
eignKey and the PositiveIntegerField. If you need to override this, you can pass in the ct_field and
fk_field options that GenericForeignKey takes.

Note: Unfortunately, because Django currently lacks support for composite fields, if you need to display the
LinkField in a form, there are a couple of things you need to do.

1. Your Form class needs to mixin the LinkFormMixin.

2. You need to explicitly define a LinkFormField on your Form class.

Hopefully in future iterations of Django, these steps will be obsoleted.

3.3.2 Registry

If you want to expose your model to the link framework to allow things to link to it, you need to do two things.

1. You need to register your model with the links registry.

from django.db import models
from widgy.models import links

class Blog(models.Model):
...

links.register(Blog)

The register() function also works as a class decorator.

from django.db import models
from widgy.models import links

@links.register
class Blog(models.Model):

...

20 Chapter 3. API Reference

https://docs.djangoproject.com/en/1.5/ref/contrib/contenttypes/#django.contrib.contenttypes.generic.GenericForeignKey
https://docs.djangoproject.com/en/1.5/ref/contrib/contenttypes/#django.contrib.contenttypes.models.ContentType

django-widgy Documentation, Release 0.7.1

2. You need to make sure that your model defines a get_absolute_url method.

3.4 Template Tags

To use these, you’ll need to {% load widgy_tags %}.

widgy.templatetags.widgy_tags.render(node)

Renders a node. Use this in your render.html templates to render any node that isn’t a root node. Under the hood,
this template tag calls Content.render with the current context.

Example:

{% for child in self.get_children %}
{% render child %}

{% endfor %}

widgy.templatetags.widgy_tags.scss_files(site)

widgy.templatetags.widgy_tags.js_files(site)

These template tags provide a way to extract the WidgySite.scss_files off of a site. This is required if you
don’t have access to the site in the context, but do have a reference to it in your settings file. scss_files() and
js_files() can also accept an import path to the site.

{% for js_file in 'WIDGY_MEZZANINE_SITE'|js_files %}
<script src="{% static js_file %}"></script>

{% endfor %}

widgy.templatetags.widgy_tags.render_root(owner, field_name)

The template entry point for rendering a tree. It delegates to WidgyField.render. The root_node_override
template context variable can be used to override the root node that is rendered (for preview).

{% render_root owner_obj 'content' %}

3.4. Template Tags 21

django-widgy Documentation, Release 0.7.1

22 Chapter 3. API Reference

CHAPTER 4

Tutorials

4.1 Quickstart

This quickstart assumes you wish to use the following packages:

• Widgy Mezzanine

• Page Builder

• Form Builder

Install the Widgy package:

pip install django-widgy[all]

Add Mezzanine apps to INSTALLED_APPS in settings.py:

'mezzanine.conf',
'mezzanine.core',
'mezzanine.generic',
'mezzanine.pages',
'django_comments',
'django.contrib.sites',
'filebrowser_safe',
'grappelli_safe',

add Widgy to INSTALLED_APPS:

'widgy',
'widgy.contrib.page_builder',
'widgy.contrib.form_builder',
'widgy.contrib.widgy_mezzanine',

add required Widgy apps to INSTALLED_APPS:

'filer',
'easy_thumbnails',
'compressor',
'argonauts',
'sorl.thumbnail',

django.contrib.admin should be installed after Mezzanine and Widgy, so move it under them in
INSTALLED_APPS.

add Mezzanine middleware to MIDDLEWARE_CLASSES:

23

django-widgy Documentation, Release 0.7.1

'mezzanine.core.request.CurrentRequestMiddleware',
'mezzanine.core.middleware.AdminLoginInterfaceSelectorMiddleware',
'mezzanine.pages.middleware.PageMiddleware',

Mezzanine settings:

settings.py
PACKAGE_NAME_FILEBROWSER = "filebrowser_safe"
PACKAGE_NAME_GRAPPELLI = "grappelli_safe"
ADMIN_MEDIA_PREFIX = STATIC_URL + "grappelli/"
TESTING = False
GRAPPELLI_INSTALLED = True
SITE_ID = 1

If you want mezzanine to use WidgyPage as the default page, you can add the following line to settings.py:

ADD_PAGE_ORDER = (
'widgy_mezzanine.WidgyPage',

)

add Mezzanine’s context processors. If you don’t already have TEMPLATE_CONTEXT_PROCESSORS in your set-
tings file, you should copy the default before adding Mezzanine’s:

TEMPLATE_CONTEXT_PROCESSORS = (
Defaults
"django.contrib.auth.context_processors.auth",
"django.contrib.messages.context_processors.messages",
"django.core.context_processors.debug",
"django.core.context_processors.i18n",
"django.core.context_processors.static",
"django.core.context_processors.media",
"django.core.context_processors.request",
Mezzanine
"mezzanine.conf.context_processors.settings",
"mezzanine.pages.context_processors.page",

)

make a Widgy site and set it in settings:

demo/widgy_site.py
from widgy.site import WidgySite

class WidgySite(WidgySite):
pass

site = WidgySite()

settings.py
WIDGY_MEZZANINE_SITE = 'demo.widgy_site.site'

Configure django-compressor:

settings.py
STATICFILES_FINDERS = (

'compressor.finders.CompressorFinder',
'django.contrib.staticfiles.finders.FileSystemFinder',
'django.contrib.staticfiles.finders.AppDirectoriesFinder',

)

COMPRESS_ENABLED = True

24 Chapter 4. Tutorials

django-widgy Documentation, Release 0.7.1

COMPRESS_PRECOMPILERS = (
('text/x-scss', 'django_pyscss.compressor.DjangoScssFilter'),

)

Note: Widgy requires that django-compressor be configured with a precompiler for text/x-scss. Widgy uses the
django-pyscss package for easily integrating the pyScss library with Django.

Note: If you are using a version of Django older than 1.7, you will need use South 1.0 or set
SOUTH_MIGRATION_MODULES.

Then run the following command:

$ python manage.py migrate

Note: If you are on a version of Django older than 1.7, you will need to run the following command as well:

$ python manage.py syncdb

add urls:

urls.py
from django.conf.urls import patterns, include, url
from demo.widgy_site import site as widgy_site

urlpatterns = patterns('',
...
widgy admin
url(r'^admin/widgy/', include(widgy_site.urls)),
widgy frontend
url(r'^widgy/', include('widgy.contrib.widgy_mezzanine.urls')),
url(r'^', include('mezzanine.urls')),

)

Make sure you have a url pattern named home or the admin templates will not work right.

If you are using GenericTemplateFinderMiddleware, use the one from
fusionbox.mezzanine.middleware. It has been patched to work with Mezzanine.

4.1.1 How to edit home page

1. Add the homepage to your urls.py:

url(r'^$', 'mezzanine.pages.views.page', {'slug': '/'}, name='home'),

Note: it must be a named URL, with the name ‘home’

2. Make a page with the slug / and publish it.

3. Make a template called pages/index.html and put:

{% extends "pages/widgypage.html" %}

Note: If you don’t do this you will likely get the following error:

AttributeError: 'Settings' object has no attribute 'FORMS_EXTRA_FIELDS'

4.1. Quickstart 25

https://github.com/fusionbox/django-pyscss
https://github.com/Kronuz/pyScss

django-widgy Documentation, Release 0.7.1

This is caused by Mezzanine falling back its own template pages/index.html which tries to provide the
inline editing feature, which requires mezzanine.forms to be installed.

4.1.2 Admin center

A nice ADMIN_MENU_ORDER:

settings.py
ADMIN_MENU_ORDER = [

('Widgy', (
'pages.Page',
'page_builder.Callout',
'form_builder.Form',
('Review queue', 'review_queue.ReviewedVersionCommit'),
('File manager', 'filer.Folder'),

)),
]

4.1.3 urlconf include

urlconf_include is an optional application that allows you to install urlpatterns in the Mezzanine page tree. To
use it, put it in INSTALLED_APPS,:

'widgy.contrib.urlconf_include',

then add the urlconf_include middleware,:

'widgy.contrib.urlconf_include.middleware.PatchUrlconfMiddleware',

then set URLCONF_INCLUDE_CHOICES to a list of allowed urlpatterns. For example:

URLCONF_INCLUDE_CHOICES = (
('blog.urls', 'Blog'),

)

4.1.4 Adding Widgy to Mezzanine

If you are adding widgy to an existing mezzanine site, there are some additional considerations.

If you have not done so already, add the root directory of your mezzanine install to INSTALLED_APPS.

Also, take care when setting the WIDGY_MEZZANINE_SITE variable in your settings.py file. Because mezzanine
is using an old Django directory structure, it uses your root directory as your project file:

Use:
WIDGY_MEZZANINE_SITE = 'myproject.demo.widgy_site.site'
Not:
WIDGY_MEZZANINE_SITE = 'demo.widgy_site.site'

4.1.5 Common Customizations

If you only have WidgyPages, you can choose to unregister the Mezzanine provided RichTextPage. Simply add
this to an admin.py file in your directory and add this code:

26 Chapter 4. Tutorials

django-widgy Documentation, Release 0.7.1

from django.contrib import admin

from mezzanine.pages.models import RichTextPage

admin.site.unregister(RichTextPage)

4.2 Building Widgy’s JavaScript With RequireJS

Widgy’s editing interface uses RequireJS to handle dependency management and to encourage code modularity. This
is convenient for development, but might be slow in production due to the many small JavaScript files. Widgy supports
building its JavaScript with the RequireJS optimizer to remedy this. This is entirely optional and only necessary if the
performance of loading many small JavaScript and template files bothers you.

To build the JavaScript,

• Install django-require:

pip install django-require

• Add the settings for django-require:

REQUIRE_BUILD_PROFILE = 'widgy.build.js'
REQUIRE_BASE_URL = 'widgy/js'
STATICFILES_STORAGE = 'require.storage.OptimizedStaticFilesStorage'

• Install node or rhino to run r.js. django-require will detect which one you installed. rhino is nice because
you can apt-get it:

apt-get install rhino

Now the JavaScript will automatically built during collectstatic.

4.3 Writing Your First Widget

In this tutorial, we will build a Slideshow widget. You probably want to read the Quickstart to get a Widgy site running
before you do this one.

We currently have a static slideshow that we need to make editable. Users need to be able to add any number of slides.
Users also want to be able to change the delay between each slide.

Here is the current slideshow HTML that is using jQuery Cycle2:

<div class="cycle-slideshow"
data-cycle-timeout="2000"
data-cycle-caption-template="{% templatetag openvariable %}alt{% templatetag closevariable %}">

<div class="cycle-caption"></div>

</div>

See also:

templatetag This template tag allows inserting the {{ and }} characters needed by Cycle2.

4.2. Building Widgy’s JavaScript With RequireJS 27

http://requirejs.org/docs/optimization.html
https://docs.djangoproject.com/en/1.5/ref/contrib/staticfiles/#django-admin-collectstatic
http://jquery.malsup.com/cycle2/
https://docs.djangoproject.com/en/1.5/ref/templates/builtins/#std:templatetag-templatetag

django-widgy Documentation, Release 0.7.1

4.3.1 1. Write the Models

The first step in writing a widget is to write the models. We are going to make a new Django app for these widgets.

$ python manage.py startapp slideshow

(Don’t forget to add slideshow to your INSTALLED_APPS).

Now let’s write the models. We need to make a Slideshow model as the container and a Slide model that
represents the individual images.

slideshow/models.py
from django.db import models
import widgy
from widgy.models import Content

@widgy.register
class Slideshow(Content):

delay = models.PositiveIntegerField(default=2,
help_text="The delay in seconds between slides.")

accepting_children = True
editable = True

@widgy.register
class Slide(Content):

image = models.ImageField(upload_to='slides/', null=True)
caption = models.CharField(max_length=255)

editable = True

All widget classes inherit from widgy.models.base.Content. This creates the relationship with
widgy.models.base.Node and ensures that all of the required methods are implemented.

In order to make a widget visible to Widgy, you have to add it to the registry. There are two functions in the
widgy module that help with this, widgy.register() and widgy.unregister(). You should use the
widgy.register() class decorator on any model class that you wish to use as a widget.

Both widgets need to have editable set to True. This will make an edit button appear in the editor, allowing the
user to set the image, caption, and delay values.

Slideshow has accepting_children set to True so that you can put a Slide in it. The default im-
plementation of valid_parent_of() checks accepting_children. We only need this until we override
valid_parent_of() in Step 3.

Note: As you can see, the image field is null=True. It is necessary for all fields in a widget either to be
null=True or to provide a default. This is because when a widget is dragged onto a tree, it needs to be saved
without data.

CharFields don’t need to be null=True because if they are non-NULL, the default is an empty string. For most
other field types, you must have null=True or a default value.

Now we need to generate migration for this app.

$ python manage.py schemamigration --initial slideshow

And now run the migration.

$ python manage.py migrate

28 Chapter 4. Tutorials

https://docs.djangoproject.com/en/1.5/ref/settings/#std:setting-INSTALLED_APPS
https://docs.djangoproject.com/en/1.5/ref/models/fields/#django.db.models.CharField

django-widgy Documentation, Release 0.7.1

4.3.2 2. Write the Templates

After that, we need to write our templates. The templates are expected to be named
widgy/slideshow/slideshow/render.html and widgy/slideshow/slide/render.html.

To create the slideshow template, add a file at slideshow/templates/widgy/slideshow/slideshow/render.html.

{% load widgy_tags %}
<div class="cycle-slideshow"

data-cycle-timeout="{{ self.get_delay_milliseconds }}"
data-cycle-caption-template="{% templatetag openvariable %}alt{% templatetag closevariable %}">
<div class="cycle-caption"></div>

{% for child in self.get_children %}
{% render child %}

{% endfor %}
</div>

For the slide, it’s slideshow/templates/widgy/slideshow/slide/render.html.

See also:

Content.get_templates_hierarchy Documentation for how templates are discovered.

The current Slideshow instance is available in the context as self. Because jQuery Cycle2 only accepts millisec-
onds instead of seconds for the delay, we need to add a method to the Slideshow class.

class Slideshow(Content):
...
def get_delay_milliseconds(self):

return self.delay * 1000

The Content class mirrors several methods of the TreeBeard API, so you can call get_children() to get
all the children. To render a child Content, use the render() template tag.

Caution: You might be tempted to include the HTML for each Slide inside the render template for
Slideshow. While this does work, it is a violation of the single responsibility principle and makes it difficult for
slides (or subclasses thereof) to change how they are rendered.

4.3.3 3. Write the Compatibility

Right now, the Slideshow and Slide render and could be considered complete; however, the way we have it,
Slideshow can accept any widget as a child and a Slide can go in any parent. To disallow this, we have to write
some Compatibility methods.

class Slideshow(Content):
def valid_parent_of(self, cls, obj=None):

only accept Slides
return issubclass(cls, Slide)

class Slide(Content):
@classmethod
def valid_child_of(cls, parent, obj=None):

only go in Slideshows
return isinstance(parent, Slideshow)

4.3. Writing Your First Widget 29

https://tabo.pe/projects/django-treebeard/docs/2.0b1/api.html#module-treebeard.models

django-widgy Documentation, Release 0.7.1

Done.

4.3.4 Addendum: Limit Number of Children

Say you want to limit the number of Slide children to 3 for your Slideshow. You do so like this:

class Slideshow(Content):
def valid_parent_of(self, cls, obj=None):

if obj in self.get_children():
If it's already one of our children, it is valid
return True

else:
Make sure it's a Slide and that you aren't full
return (issubclass(cls, Slide) and

len(self.get_children()) < 3)

4.4 Proxy Widgy Model Tutorial

Widgy was developed with a batteries included philosophy like Django. When building your own widgy project, you
may find that you need to change the behavior of certain widgets. With widgy.unregister(), you can disable
existing widgy models and re-enable it with your custom proxy model with widgy.register().

This tutorial will cover a simple case where we add HTML classes to the <input> tags in the contrib module, Form
Builder . This tutorial assumes that you have a working widgy project. Please go through the Quickstart if you do not
have a working project.

In a sample project, we are adding Bootstrap styling to our forms. Widgy uses an easy template hierarchy to replace
all of the templates for styling; however, when we get to adding the styling class, ‘form-control’, to each of our input
boxes in the forms, there is no template to replace.

See also:

Content.get_templates_hierarchy Documentation for how templates are discovered.

Widgy uses the power of Django to create a widget with predefined attributes.

To insert the class, you will need to override the attribute widget_attrs in
widgy.contrib.form_builder.models.FormInput. Start by creating a models.py file in your
project and add your project to the INSTALLED_APPS if you have not done so already. Then add this to your
models.py file:

import widgy

from widgy.contrib.form_builder.models import FormInput

widgy.unregister(FormInput)

@widgy.register
class BootstrapFormInput(FormInput):

class Meta:
proxy = True
verbose_name = 'Form Input'
verbose_name_plural = 'Form Inputs'

@property
def widget_attrs(self):

30 Chapter 4. Tutorials

django-widgy Documentation, Release 0.7.1

attrs = super(BootstrapFormInput, self).widget_attrs
attrs['class'] = attrs.get('class', '') + ' form-control'
return attrs

This code simply unregisters the existing FormInput and reregisters our proxied version to replace the attribute
widget_attrs.

To test it, simply create a form with a form input field and preview it in the widgy interface. When you view the HTML
source for that field, you will see that the HTML class form-control is now added to <input>.

In another example, if you wanted to override the compatibility and verbose_name for Page Builder’s
CalloutBucket, you could do the following:

import widgy
from widgy.contrib.page_builder.models import CalloutBucket

widgy.unregister(CalloutBucket)

@widgy.register
class MyCalloutBucket(CalloutBucket):

class Meta:
proxy = True
verbose_name = 'Awesome Callout'

def valid_parent_of(self, cls, obj=None):
return issubclass(cls, (MyWidget)) or \

super(MyCalloutBucket, self).valid_parent_of(self, cls, obj)

Finally, when using proxy models, if you proxy and unregister a model that already has saved instances in the database,
the old class will be used. If you still need to use the existing widgets for the new proxy model, you will need to write
a database migration to update the content types. Here is a sample of what may be required for this migration:

Node.objects.filter(content_type=old_content_type).update(content_type=new_content_type)

More info on proxying models can be found on Django’s documentation on proxy models

4.4. Proxy Widgy Model Tutorial 31

https://docs.djangoproject.com/en/1.5/topics/db/models/#proxy-models

django-widgy Documentation, Release 0.7.1

32 Chapter 4. Tutorials

CHAPTER 5

Changelog

5.1 0.7.1 (2015-08-18)

• Fix python 3 compatibility: SortedDict.keys() was returning an iterator instead of a view. This was causing
form_builder/forms/XX not to display properly.

5.2 0.7.0 (2015-07-31)

• Possible Breaking Change Updated the django-pyscss dependency. Please see the django-pyscss changelog
for documentation on how/if you need to change anything.

• Django 1.8 compatibility.

• Python 3 compatibility

• Django 1.7 is now the minimum supported version

• Mezzanine 4.0 is now the minimum supported version

• Content.clone now copies simple many-to-many relationships. If you have a widget with a many-to-many
field and an overridden clone method that calls super, you should take this into account. If you have many-
to-many relationships that use a custom through table, you will have to continue to override clone to clone
those.

• Backwards Incompatible WidgySite.has_add_permission signature changed.

• Multisite support

– One widgy project can now respond to multiple domains. Use cases could be Widgy as a Service or
multi-franchise website.

– This feature depends on Mezzanine multi-tenancy

– Callouts are now tied to a django site

– This feature is provided by widgy.contrib.widgy_mezzanine.site.MultiSitePermissionMixin

5.3 0.6.1 (2015-05-01)

• Fix non-determinism bug with find_media_files.

33

https://github.com/fusionbox/django-pyscss
https://pypi.python.org/pypi/django-pyscss/2.0.0#changelog
http://mezzanine.jupo.org/docs/multi-tenancy.html

django-widgy Documentation, Release 0.7.1

5.4 0.6.0 (2015-04-30)

• Improved the compatibility error messages [#299, #193]

• Remove the recommendation to use mezzanine.boot as it was not required [#291]

• Possible Breaking Change Updated the django-pyscss dependency. Please see the django-pyscss changelog
for documentation on how/if you need to change anything.

• By default, Widgy views are restricted to staff members. Previously any authenticated user was allowed. This
effects the preview view and pop out edit view, among others. If you were relying on the ability for any user to
access those, override authorize_view in your WidgySite. [#267]:

class MyWidgySite(WidgySite):
def authorize_view(self, request, view):

if not request.user.is_authenticated()
raise PermissionDenied

5.5 0.5.0 (2015-04-17)

• Backwards Incompatible RichTextPage is no longer unregistered by default in widgy_mezzanine. If you wish
to unregister it, you can add the following to your admin.py file:

from django.contrib import admin
from mezzanine.pages.models import RichTextPage
admin.site.unregister(RichTextPage)

• Bugfix: Previously, the Widgy editor would break if CSRF_COOKIE_HTTPONLY was set to True [#311]

• Switched to py.test for testing. [#309]

5.6 0.4.0 (2015-03-12)

• Django 1.7 support. Requires upgrade to South 1.0 (Or use of SOUTH_MIGRATION_MODULES) if you stay
on Django < 1.7. You may have to –fake some migrations to upgrade to the builtin Django migrations. Make
sure your database is up to date using South, then upgrade Django and run:

./manage.py migrate --fake widgy

./manage.py migrate --fake easy_thumbnails

./manage.py migrate

• Support for installing Widgy without the dependencies of its contrib apps. The ‘django-widgy’ package only
has dependencies required for Widgy core. Each contrib package has a setuptools ‘extra’. To install everything,
replace ‘django-widgy’ with ‘django-widgy[all]’. [#221]

• Switched to tox for test running and allow running core tests without contrib. [#294]

• Stopped relying on urls with consecutive ‘/’ characters [#233]. This adds a new urlpattern for
widgy_mezzanine’s preview page and form submission handler. The old ones will keep working, but you
should reverse with ‘page_pk’ instead of ‘slug’. For example:

url = urlresolvers.reverse('widgy.contrib.widgy_mezzanine.views.preview', kwargs={
'node_pk': node.pk,
'page_pk': page.pk,

})

34 Chapter 5. Changelog

https://github.com/fusionbox/django-pyscss
https://pypi.python.org/pypi/django-pyscss/2.0.0#changelog

django-widgy Documentation, Release 0.7.1

• Treat help_text for fields in a widget form as safe (HTML will not be escaped) [#298]. If you were re-
lying on HTML special characters being escaped, you should replace help_text="1 is < 2" with
help_text=django.utils.html.escape("1 is < 2").

• Reverse URLs in form_builder admin with consideration for Form subclasses [#274].

5.7 0.3.5 (2015-01-30)

Bugfix release:

• Set model at runtime for ClonePageView and UnpublishView [Rocky Meza, #286]

5.8 0.3.4 (2015-01-22)

Bugfix release:

• Documentation fixes [Rocky Meza and Gavin Wahl]

• Fixes unintentional horizontal scrolling of Widgy content [Justin Stollsteimer]

• Increased spacing after widget title paragraphs [Justin Stollsteimer]

• Fixed styles in ckeditor to show justifications [Zachery Metcalf, #279]

• Eliminated the margins for InvisibleMixin [Rocky Meza]

• CSS support for adding fields to Image. [Rocky Meza]

• Additional mezzanine container style overflow fixes [Justin Stollsteimer]

• Fix r.js optimization errors with daisydiff [Rocky Meza]

• Remove delete button from widgypage add form [Gavin Wahl]

5.9 0.3.3 (2014-12-22)

Bugfix release:

• Allow cloning with an overridden WIDGY_MEZZANINE_PAGE_MODEL [Zach Metcalf, #269]

• SCSS syntax error [Rivo Laks, #271]

5.10 0.3.2 (2014-10-16)

Bugfix release:

• Allow WidgyAdmin to check for ReviewedWidgySite without review_queue installed [Scott Clark, #265]

• Fix handling of related_name on ProxyGenericRelation [#264]

5.11 0.3.1 (2014-10-01)

Bugfix release for 0.3.0. #261, #263.

5.7. 0.3.5 (2015-01-30) 35

django-widgy Documentation, Release 0.7.1

5.12 0.3.0 (2014-09-24)

This release mainly focusses on the New Save Flow feature, but also includes several bug fixes and some nice CSS
touch ups. There have been some updates to the dependencies, so please be sure to check the How to Upgrade section
to make sure that you get everything updated correctly.

5.12.1 Major Changes

• New Save Flow Requires upgrading Mezzanine to at least 3.1.10 [Gavin Wahl, Rocky Meza, #241]

We have updated the workflow for WidgyPage. We consider this an experiment that we can hopefully expand
to all WidgyAdmins in the future. We hope that this new save flow is more intuitive and less tedious.

Screenshot of before:

Screenshot of after:

As you can see, we have rearranged some of the buttons and have gotten rid of the Published Status button. The
new save buttons on the bottom right now will control the publish state as well as the commit status. This means
that now instead of committing and saving being a two-step process, it all lives in one button. This should make
editing and saving a smoother process. Additionally, we have renamed some buttons to make their intent more
obvious.

5.12.2 Bug Fixes

• Updated overridden directory_table template for django-filer 0.9.6. Requires upgrading django-filer to at
least 0.9.6. [Scott Clark, #179]

• Fix bug in ReviewedVersionTrackerQuerySet.published [Gavin Wahl, #240]

• Made commit buttons not look disabled [Justin Stollsteimer, #250, #205]

• (Demo) Added ADD_PAGE_ORDER to demo settings [Zach Metcalf, #248]

• (Demo) Updated demo project requirements [Scott Clark, #234]

• Make Widgy’s jQuery private to prevent clashes with other admin extensions [Gavin Wahl, #246]

5.12.3 Documentation

• Update recommend ADMIN_MENU_ORDER to clarify django-filer [Gavin Wahl, #249]

5.12.4 How to Upgrade

In this release, widgy has udpated two of its dependencies:

• The minimum supported version of django-filer is now 0.9.6 (previously 0.9.5).

• The minimum supported version of Mezzanine is now 3.1.10 (previously 1.3.0).

If you pip install django-widgy==0.3.0, it should upgrade the dependencies for you, but just to be sure,
you may want to also run

pip install 'django-filer>=0.9.6' 'Mezzanine>=3.1.10'

36 Chapter 5. Changelog

django-widgy Documentation, Release 0.7.1

to make sure that you get the updates.

Note: Please note that if you are upgrading from an older version of Mezzanine, that the admin center has been
restyled a little bit.

5.13 0.2.0 (2014-08-04)

5.13.1 Changes

• Widgy is now Apache Licensed

• Breaking Change Use django-pyscss for SCSS compilation. [Rocky Meza, #175]

Requires an update to the COMPRESS_PRECOMPILERS setting:

COMPRESS_PRECOMPILERS = (
('text/x-scss', 'django_pyscss.compressor.DjangoScssFilter'),

)

You may also have to update @import statements in your SCSS, because django-pyscss uses a different
(more consistent) rule for path resolution. For example, @import ’widgy_common’ should be changed
to @import ’/widgy/css/widgy_common’

• Added help_text to Section to help user avoid bug [Zach Metcalf, #135]

• Allow UI to updated based on new data after reposition [Gavin Wahl, #199]

• Changed Button’s css_classes in shelf [Rocky Meza, #203]

• Added loading cursor while ajax is in flight [Gavin Wahl, #215, #208]

• Get rid of “no content” [Gavin Wahl, #206]

• Use sprites for the widget icons [Gavin Wahl and Rocky Meza, #89, #227]

• Only show approve/unapprove buttons for interesting commits [Gavin Wahl, #228]

• Updated demo app to have new design and new widgets [Justin Stollsteimer, Gavin Wahl, Antoine Catton and
Rocky Meza, #129, #176]

• Added cloning for WidgyPages [Gavin Wahl, #235]

• Use a more realistic context to render pages for search [Gavin Wahl, #166]

• Add default children to Accordion and Tabs [Rocky Meza, #238]

5.13.2 Bugfixes

• Fix cursors related to dragging [Gavin Wahl, #155]

• Update safe urls [Gavin Wahl, #212]

• Fix widgy_mezzanine preview for Mezzanine==3.1.2 [Rocky Meza, #201]

• Allow RichTextPage in the admin [Zach Metcalf, #197]

• Don’t assume the response has a content-type header [Gavin Wahl, #216]

• Fix bug with FileUpload having empty values [Rocky Meza, #217]

• Fix urlconf_include login_required handling [Gavin Wahl, #200]

5.13. 0.2.0 (2014-08-04) 37

https://github.com/fusionbox/django-pyscss

django-widgy Documentation, Release 0.7.1

• Patch fancybox to work with jQuery 1.9 [Gavin Wahl, #222]

• Fix some import errors in SCSS [Rocky Meza, #230]

• Fix restore page in newer versions of Mezzanine [Gavin Wahl, #232]

• Use unicode format strings in review queue [Gavin Wahl, #236]

5.13.3 Documentation

• Updated quickstart to cover south migrations with easy_thumbnails [Zach Metcalf, #202]

• Added Proxy Widgy Model Tutorial [Zach Metcalf, #210]

5.14 0.1.6 (2014-09-09)

• Fix migrations containing unsupported KeywordsField from mezzanine [Scott Clark]

• Rename package to django-widgy

5.15 0.1.5 (2013-11-23)

• Fix Widgy migrations without Mezzanine [Gavin Wahl]

• Drop target collision detection [Gavin Wahl]

• Fix Figure and StrDisplayNameMixin [Gavin Wahl]

• Avoid loading review_queue when it’s not installed [Scott Clark]

• Fix multi-table inheritance with LinkFields [Gavin Wahl]

5.16 0.1.4 (2013-11-04)

• Add StrDisplayNameMixin

5.17 0.1.3 (2013-10-25)

• Fix image widget validation with the S3 storage backend

5.18 0.1.2 (2013-10-23)

• Fix Widgy admin for static files hosted on a different domain

38 Chapter 5. Changelog

django-widgy Documentation, Release 0.7.1

5.19 0.1.1 (2013-10-21)

• Adjust MANIFEST.in to fix PyPi install.

• Fix layout having a unicode verbose_name

5.20 0.1.0 (2013-10-18)

First release.

Basic features:

• Heterogeneous tree editor (widgy)

• CMS (widgy.contrib.widgy_mezzanine)

• CMS Plugins (widgy.contrib.urlconf_include)

• Widgets (widgy.contrib.page_builder)

• Form builder (widgy.contrib.form_builder)

• Multilingual pages (widgy.contrib.widgy_i18n)

• Review queue (widgy.contrib.review_queue)

5.19. 0.1.1 (2013-10-21) 39

django-widgy Documentation, Release 0.7.1

40 Chapter 5. Changelog

CHAPTER 6

Development

You can follow and contribute to Widgy’s development on GitHub. There is a developers mailing list available at
widgy@fusionbox.com

41

https://github.com/fusionbox/django-widgy
https://groups.google.com/a/fusionbox.com/forum/#!forum/widgy

django-widgy Documentation, Release 0.7.1

42 Chapter 6. Development

Index

A
Accordion (class in widgy.contrib.page_builder.models),

8
add_child() (widgy.models.base.Content method), 13
add_root() (widgy.models.base.Content class method), 13
add_sibling() (widgy.models.base.Content method), 14
admin.VersionCommitAdminBase (class in

widgy.contrib.review_queue), 11
admin_scss_files (widgy.site.WidgySite attribute), 19
authorize_view() (widgy.site.WidgySite method), 18

B
build_form_class() (widgy.contrib.form_builder.models.Form

method), 9
Button (class in widgy.contrib.page_builder.models), 8

C
CalloutWidget (class in

widgy.contrib.page_builder.models), 8
CAN_POP_OUT (widgy.models.base.Content attribute),

15
CANNOT_POP_OUT (widgy.models.base.Content at-

tribute), 15
ChoiceField (class in widgy.contrib.form_builder.models),

9
clone() (widgy.models.base.Content method), 14
commit_view (widgy.site.WidgySite attribute), 19
Content (class in widgy.models.base), 13
content (widgy.models.base.Node attribute), 17
content_view (widgy.site.WidgySite attribute), 19
css_classes (widgy.models.base.Content attribute), 14

D
DefaultLayout (class in

widgy.contrib.page_builder.models), 7
delete() (widgy.models.base.Content method), 14
depth_first_order() (widgy.models.base.Content method),

13
depth_first_order() (widgy.models.base.Node method),

17

diff_view (widgy.site.WidgySite attribute), 19
display_name (widgy.models.base.Content attribute), 14

E
edit_templates (widgy.models.base.Content attribute), 15
equal() (widgy.models.base.Content method), 17

F
Figure (class in widgy.contrib.page_builder.models), 8
find_widgy_problems() (widgy.models.base.Node class

method), 17
Form (class in widgy.contrib.form_builder.models), 9
FormField (class in widgy.contrib.form_builder.models),

9
FormInput (class in widgy.contrib.form_builder.models),

9

G
get_all_content_classes() (widgy.site.WidgySite method),

17
get_ancestors() (widgy.models.base.Content method), 13
get_children() (widgy.models.base.Content method), 13
get_form() (widgy.models.base.Content method), 15
get_form_class() (widgy.models.base.Content method),

15
get_next_sibling() (widgy.models.base.Content method),

13
get_parent() (widgy.models.base.Content method), 13
get_render_templates() (widgy.models.base.Content

method), 16
get_root() (widgy.models.base.Content method), 13
get_site() (widgy.contrib.review_queue.admin.VersionCommitAdminBase

method), 11
get_templates_hierarchy() (widgy.models.base.Content

class method), 15
get_urls() (widgy.site.WidgySite method), 18
get_version_tracker_model() (widgy.site.WidgySite

method), 18
GoogleMap (class in widgy.contrib.page_builder.models),

8

43

django-widgy Documentation, Release 0.7.1

H
has_add_permission() (widgy.site.WidgySite method), 18
has_change_permission() (widgy.site.WidgySite

method), 18
has_delete_permission() (widgy.site.WidgySite method),

18
help_text (widgy.contrib.form_builder.models.FormField

attribute), 9
history_view (widgy.site.WidgySite attribute), 19
Html (class in widgy.contrib.page_builder.models), 7

I
Image (class in widgy.contrib.page_builder.models), 8
ImageField (class in widgy.contrib.page_builder.db.fields),

8
is_frozen (widgy.models.base.Node attribute), 17

J
js_files (widgy.site.WidgySite attribute), 19
js_files() (in module widgy.templatetags.widgy_tags), 21

L
label (widgy.contrib.form_builder.models.FormField at-

tribute), 9
LinkField (class in widgy.models.links), 20

M
MainContent (class in

widgy.contrib.page_builder.models), 7
Markdown (class in widgy.contrib.page_builder.models),

7
maybe_prefetch_tree() (widgy.models.base.Node

method), 17
MultipleChoiceField (class in

widgy.contrib.form_builder.models), 9
MUST_POP_OUT (widgy.models.base.Content at-

tribute), 15

N
Node (class in widgy.models.base), 17
node (widgy.models.base.Content attribute), 13
node_edit_view (widgy.site.WidgySite attribute), 19
node_parents_view (widgy.site.WidgySite attribute), 19
node_templates_view (widgy.site.WidgySite attribute),

19
node_view (widgy.site.WidgySite attribute), 19

P
post_create() (widgy.models.base.Content method), 14
prefetch_tree() (widgy.models.base.Node method), 17
prefetch_trees() (widgy.models.base.Node class method),

17

preview_templates (widgy.models.base.Content at-
tribute), 15

R
render() (in module widgy.templatetags.widgy_tags), 21
render() (widgy.models.base.Content method), 16
render() (widgy.models.base.Node method), 17
render_root() (in module

widgy.templatetags.widgy_tags), 21
reposition() (widgy.models.base.Content method), 14
required (widgy.contrib.form_builder.models.FormField

attribute), 9
reset_view (widgy.site.WidgySite attribute), 19
reverse() (widgy.site.WidgySite method), 18
revert_view (widgy.site.WidgySite attribute), 19

S
scss_files (widgy.site.WidgySite attribute), 19
scss_files() (in module widgy.templatetags.widgy_tags),

21
Section (class in widgy.contrib.page_builder.models), 8
shelf_view (widgy.site.WidgySite attribute), 19
Sidebar (class in widgy.contrib.page_builder.models), 7

T
Table (class in widgy.contrib.page_builder.models), 8
TableData (class in widgy.contrib.page_builder.models),

8
TableHeaderData (class in

widgy.contrib.page_builder.models), 8
TableRow (class in widgy.contrib.page_builder.models), 8
Tabs (class in widgy.contrib.page_builder.models), 8
Textarea (class in widgy.contrib.form_builder.models), 9
tooltip (widgy.models.base.Content attribute), 14

U
Uncaptcha (class in widgy.contrib.form_builder.models),

9
UnsafeHtml (class in widgy.contrib.page_builder.models),

8
urls() (widgy.site.WidgySite method), 17

V
valid_child_of() (widgy.models.base.Content class

method), 16
valid_child_of() (widgy.site.WidgySite method), 18
valid_parent_of() (widgy.models.base.Content method),

16
valid_parent_of() (widgy.site.WidgySite method), 18
validate_relationship() (widgy.site.WidgySite method),

18
Video (class in widgy.contrib.page_builder.models), 8

44 Index

django-widgy Documentation, Release 0.7.1

W
widgy.contrib.form_builder.views.HandleFormMixin

(class in widgy.contrib.form_builder.models),
10

widgy.contrib.widgy_mezzanine.models.WidgyPage
(built-in class), 10

WidgySite (class in widgy.site), 17

Index 45

	Design
	Data Model
	Versioning
	Customization
	Owners
	Editor

	Contrib Packages
	Page Builder
	Form Builder
	Widgy Mezzanine
	Review Queue

	API Reference
	Base Models
	Widgy Site
	Links Framework
	Template Tags

	Tutorials
	Quickstart
	Building Widgy's JavaScript With RequireJS
	Writing Your First Widget
	Proxy Widgy Model Tutorial

	Changelog
	0.7.1 (2015-08-18)
	0.7.0 (2015-07-31)
	0.6.1 (2015-05-01)
	0.6.0 (2015-04-30)
	0.5.0 (2015-04-17)
	0.4.0 (2015-03-12)
	0.3.5 (2015-01-30)
	0.3.4 (2015-01-22)
	0.3.3 (2014-12-22)
	0.3.2 (2014-10-16)
	0.3.1 (2014-10-01)
	0.3.0 (2014-09-24)
	0.2.0 (2014-08-04)
	0.1.6 (2014-09-09)
	0.1.5 (2013-11-23)
	0.1.4 (2013-11-04)
	0.1.3 (2013-10-25)
	0.1.2 (2013-10-23)
	0.1.1 (2013-10-21)
	0.1.0 (2013-10-18)

	Development

